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Outline

* Epoch of Relonization: Overview and probes

* Lyman-a forests in spectra of distant QSOs
* Late Reionization model: Kulkarni et al. 2019

e 21-cm signal from EoR

* |ts observational prospects at 5.4 <z <6




Cosmic Dawn and Epoch of Reionization

* Dark Ages: Minimal interaction between matter and radiation
Sources of radiation are not formed yet

* Cosmic Dawn: High-density regions collapse into structures
Formation of first sources of radiations

* Epoch of Reionization: Ultraviolet (UV) photons ionize and heat
surrounding neutral IGM
With formation of more sources, ionization bubbles grow and merge

Years after the Big Bang
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Epoch of Reionization: Uncertainties

* What is the mass of collapsing halos?

— Atomic or molecular cooling
- Dark matter model for structure formation

* What are the heating and cooling mechanisms for IGM?

— X-ray binaries (soft spectra), accretion around black holes (hard spectra)
— Exotic physics (dark matter ?)

— Lyman-a (?)
* What are the prominant sources of ionizing radiation? (AGN or galaxies?)

* What are the sinks of ionizing photons? (dense self-shielded regions)
What is the escape fraction of photons?

 What feedback mechanisms are effective?

- Metal enrichment by supernova explosions
- Lyman-Werner feedback: Photodissossiation of H, molecules




Observing the Reionization

Direct detection: galaxies at high redshift
Observing effect of electrons on CMB spectra:

- Thomson scattering optical depth T,

- Sunyaev-Zeldovich effect

H, He:

- 21-cm hyperfine, 3-cm fine structure line of HI
— Hell hyperfine line

- Recombination lines
— absorption of Lyman lines in QSO spectra

Metal lines




Lyman-a forest of QSO spectra

Photons blueward of
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spectra is absorbed by
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Large troughs in Lyman-Q forest

SDSS J1306+0356
ULAS J0148+0600
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Becker et al. (2015)

Two QSOs at z ~ 6 have absorption troughs of
widely different widths &




Lyman-« eftective optical depth t_

SDSS J1306+0356
ULAS J0148+0600
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Becker et al. (2015)
Tor = —10g ((F/Fy))

flux F is averaged over bins of 50 Mpc/h'

E,Is the unabsorbed continuum




Lyman-o t_. has large scatter

z=>5.0,5.2,5.4,5.6,5.8,6.2

7 Bosman et al. 2018

Kulkarni et al. (2019)
Tes = —log ((F/Fp))
flux F i1s averaged over bins of 50 Mpc¢/h

F,Is the unabsorbed continuum




A Reionization model that fits Ly-« T

Kulkarni et al. (2019)




A Reionization model that fits Ly-« T
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A Reionization model that fits Ly-« T
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Simulation Setup

Cosmological hydrodynamical simulation using the
P-GADGET-3 code (Springel 2005)

Large simulation with 2048° particles
Dynamical range: 78.12 ckpc/h to 160 cMpc/h
Starting at z = 99 to z = 4 (saved at 40 Myr intervals)

lonization and temperature field calculated with
ATON (Aubert & Teyssier 2008, 2010)

ATON uses moment-based algorithm along with M1
closure to solve cosmological raditive transfer

This algorithm enables usages of GPUs




Reionization is delayed

e Relonization
midpoint: z ~ 7
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e Relonization
completed: z ~ 5.3




Reionization is delayed

e Relonization
midpoint: z ~ 7

e Relonization
completed: z ~ 5.3

* Also in agreement
with other
observational
constraints
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Reionization is delayed

Reilonization e
midpoint: z ~ 7 | * Greigl7/19

& Masonl8
B Wang20

Reionization
completed: z ~ 5.3

Also In agreement
with other
observational
constraints

Haardt and Madau
(2012): reionization
atz ~ 6.7




T . predicts Late Reionization
reion

Planck Collab. (2015) :
Treion = 0.066 = 0.016 Planck 2015, 68%




predicts Late Reionization
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Planck Collab. (2018) :
Teion = 0.054 + 0.007

Raste et al. (2021)



T . predicts Late Reionization
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T . predicts Late Reionization
reion

Planck Collab. (2015) :

... = 0.066 + 0.016

Planck Collab. (2018) :

... = 0.054 + 0.007

Kulkarni et al. (2019)
model is in agreement
with latest t
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Planck 2015, 68%

=  Kulkarni et al. 2019
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Implications for 21-cm Signal
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HI 21cm Signal from EoR

* Hyperfine splitting of HI ground state emits radiation of

)\ y 211 Cm Hydrogen hyperfine Nuclear Electron
2 . structure spin spin
* Spin temperature: T b
59x10 eV
e 91 hpvat 3‘(— f *
e — — eXp | — 1420 MHz
no 'l kTS L=21cm

Lyman-a photons and collisions couple T to T, (Field 1958)

When CMB radiations pass through a cloud of HI gas,
- 21 cm photons are absorbed (Ts < Tyg) from

— or emitted (Tg > T¢g) INtO it
Change in observed brightness temperature of CMB:
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Early Reionization at z ~ 6.7

Raste et al. (2021) '




Late Reionization at z ~ 5.3:
21-cm brightness temperature is large
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2 1-cm global signal is enhanced

| U
) Ty 1 dv, 14+ 2\73 0.14 \ 5 [ Qph

ATg =~ 27 mK app(l +6) [ 1 - —=2 (1+-——i> ( ) (_ ‘>2 il
Tq H ds 10 Q,, h? 0.022

— — Haardt and Madau 2012
— Kulkarni et al. 2019

t—

Approximation :
Te> Ty atz <10

Raste et al. (2021)

Therefore,

0 MK < (AT,) < 28.3 mK

at z < 10
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Power Spectrum

Brightness temperature power spectrum:
(Tp(k1)Tp(ks)) = (2m)*0p (k1 + ka2) Pa1 (k1)

FT  ~
I'p <—1Ip

Dimensionless power spectrum;

Aél(k)——le(k ’ :




Power spectrum of 21-cm Signal

Raste et al. (2021)




Orders of magnitude enhancement in
Power

Raste et al. (2021)




Orders of magnitude enhancement in
Power

Raste et al. (2021)




Observational Prospects at
54<72<6(203-222 MHz)

 Contaminants: galactic synchrotron radition, extra-galactic
point sources, Earth atmosphere, ionosphere, RFl,
Instrument system noise, ....

e Synchrotron foreground are weaker at higher frequency:

T o v-255
* Radio Interferometers:
> MWA lobserving]
> LOFAR lobserving]
> HERA building, observing]
> SKA1-LOW 'upcoming]




<
<
=
-
—
-
<
©
3
H
&
=
=
-
@)
£

Murch




East-West [m]
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Murchison Widefield Array MWA)
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+ Phase Il Compact
Configuration

* Antennas: 128
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+ Element size =4 m
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* Freg. range = 7/0-300 MHz
(3.73<z2<19.29)

* Freq. resolution = 40 kHz
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Low-Frequency Array (LOFAR)

Credit: https://www.astron.nl/telescopes/lofar




Low-Frequency Array (LOFAR)
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Low-Frequency Array (LOFAR)

—-1000 0
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High Band Antenna (HBA)
Core Configuration —

Antennas (split-mode):
24 X 2

Element size = 30.75 m e
D= 35.7m
D = 3550 M

Freq. range = 120-240
MHz (4.92 <z < 10.83)

Freq. resolution = 61 kHz

Location: Netherlands



Hydrogen Epoch of Reionization Array (HERA)
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Hydrogen Epoch of Reionization Array (HERA)
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Hydrogen Epoch of Reionization Array (HERA)

Hexagon with side: 11
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Square Kilometre Array SKA1-LOW

Artist's Impression
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Square Kilometre Array SKA1
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Square Kilometre Array SKA1-LOW

+ Core Configuration
+ Stations: 224

¢+ Element size = 35 m
*pb..=351m
*Db...=887m

* Freq. range = 50-350
MHz (3.06 <z < 27.4)

+ Freq. resolution = 70 (?)
kHz
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Sensitivity

* Sensitivity: Weakest signal that is detectable
by the Instrument

* We use 21cmSense (Pober et al. 2013, 2014)
to compute instrument sensitivities:

— Tracking mode

- Number of days of observation: 180

— observation duration per day: 6 hr
- Bandwidth: 8 MHz

- Moderate foreground models




Can we detect 21-cm signal at z = 5.587

r (h~! cMpc)
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= Kulkarni et al. 2019
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k (h/cMpc)

Raste et al. (2021)




Can we detect 21-cm signal at z = 5.587

— = Haardt and Madau 2012
= Kulkarni et al. 2019
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HERA and SKA1-LOW look promising !

— = Haardt and Madau 2012
= Kulkarni et al. 2019
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Raste et al. (2021)




HERA and SKA1-LOW look promising !

e
—— Kulkagxi et al. 2019

—_— H/aa{dt and Madau et al. 2012 7]
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Evolution of power spectra A, (k)

v [MHz]
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Raste et al. (2021)




2 . . .
A", upper limits have improved over years
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Summary

» Spatial fluctuations of Ly-a forest t ., Imply that

reionization is late and patchy. It ends at z ~ 5.3.

» 21-cm power spectraat 5.4 < z < 6 are enhaced

by orders of magnitude.

> Readily observed with SKA1-LOW and HERA for
1080 hr of observation assuming optimistic

foreground models.




